login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318580
Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k)^k).
0
1, 1, 7, 55, 601, 7561, 116191, 1999327, 39267985, 850964401, 20332107991, 527930427751, 14838001344937, 447653776595065, 14440021169407471, 495398956418435791, 18012260306904120481, 691502230924473978337, 27948692251661337581095, 1185878351946613955122711
OFFSET
0,3
FORMULA
E.g.f.: exp(-1 + exp(Sum_{k>=1} sigma_2(k)*x^k/k)).
E.g.f.: A(x) = exp(B(x) - 1), where B(x) = o.g.f. of A000219.
a(0) = 1; a(n) = Sum_{k=1..n} A000219(k)*k!*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(n!*coeff(series(exp(-1+mul(1/(1-x^k)^k, k=1..100)), x=0, 20), x, n), n=0..19); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[Exp[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]]], {x, 0, nmax}], x] Range[0, nmax]!
p[n_] := p[n] = Sum[DivisorSigma[2, k] p[n - k], {k, n}]/n; p[0] = 1; a[n_] := a[n] = Sum[p[k] k! Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 29 2018
STATUS
approved