OFFSET
1,4
COMMENTS
A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root. Unlike transitive rooted trees (A290689), every terminal subtree of a totally transitive rooted tree is itself totally transitive.
EXAMPLE
The a(8) = 12 totally transitive rooted trees:
(o(o)(o(o)))
(o(o)(o)(o))
(o(o)(ooo))
(o(oo)(oo))
(oo(o)(oo))
(ooo(o)(o))
(o(ooooo))
(oo(oooo))
(ooo(ooo))
(oooo(oo))
(ooooo(o))
(ooooooo)
The a(9) = 17 totally transitive rooted trees:
(o(o)(oo(o)))
(oo(o)(o(o)))
(o(o)(o)(oo))
(oo(o)(o)(o))
(o(o)(oooo))
(o(oo)(ooo))
(oo(o)(ooo))
(oo(oo)(oo))
(ooo(o)(oo))
(oooo(o)(o))
(o(oooooo))
(oo(ooooo))
(ooo(oooo))
(oooo(ooo))
(ooooo(oo))
(oooooo(o))
(oooooooo)
MATHEMATICA
totra[n_]:=totra[n]=If[n==1, {{}}, Join@@Table[Select[Union[Sort/@Tuples[totra/@c]], Complement[Union@@#, #]=={}&], {c, IntegerPartitions[n-1]}]];
Table[Length[totra[n]], {n, 20}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 20 2018
STATUS
approved