login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318171
Least prime p such that Sum_{q prime <= p} q is divisible by the first n primes.
0
2, 269, 269, 3823, 8539, 729551, 1416329, 23592593, 1478674861, 20458458289, 7558026467353, 201008815538749
OFFSET
1,1
COMMENTS
a(1)-a(9) are taken from De Koninck's book.
The sequence of indices of these primes is 1, 57, 57, 531, 1065, 58751, 108243, 1483151, 73716417, 901526695, 264119914199, 6301058125383.
REFERENCES
Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, p. 66.
EXAMPLE
2 + 3 + ... + 269 = 2 * 3 * 1145
2 + 3 + ... + 269 = 2 * 3 * 5 * 229
2 + 3 + ... + 3823 = 2 * 3 * 5 * 7 * 4473
2 + 3 + ... + 8539 = 2 * 3 * ... * 11 * 1826
2 + 3 + ... + 729551 = 2 * 3 * ... * 13 * 682263
2 + 3 + ... + 1416329 = 2 * 3 * ... * 17 * 143884
2 + 3 + ... + 23592593 = 2 * 3 * ... * 19 * 1742804
2 + 3 + ... + 1478674861 = 2 * 3 * ... * 23 * 237859969
2 + 3 + ... + 20458458289 = 2 * 3 * ... * 29 * 1392427664
2 + 3 + ... + 7558026467353 = 2 * 3 * ... * 31 * 4886311486119
2 + 3 + ... + 201008815538749 = 2 * 3 * ... * 37 * 83956482342243
MATHEMATICA
c=0; pr=2; p=2; s=2; q=2; While[c<6, While[!Divisible[s, pr], q = NextPrime[q]; s+=q]; Print[ q]; c++; p = NextPrime[p]; pr*=p]
PROG
(PARI) my(c=0, pr=2, p=2, s=2, q=2); while(c<6, while(s%pr!=0, q = nextprime(q+1); s+=q); print1(q, ", "); c++; p = nextprime(p+1); pr*=p)
CROSSREFS
Cf. A051838.
Sequence in context: A238983 A188964 A278771 * A324596 A007512 A048534
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 20 2018
EXTENSIONS
a(11) from Giovanni Resta, Aug 20 2018
a(12) from Giovanni Resta, Aug 22 2018
STATUS
approved