login
A317914
a(n) = 142099325379199423 + (n-1)*3691994023167450.
0
142099325379199423, 145791319402366873, 149483313425534323, 153175307448701773, 156867301471869223, 160559295495036673, 164251289518204123, 167943283541371573, 171635277564539023, 175327271587706473, 179019265610873923
OFFSET
1,1
COMMENTS
The terms for n = 1..26 are prime. As of Aug 10 2018, this is one of the longest known sequences of primes in arithmetic progression.
LINKS
Jens Kruse Andersen, All known AP24 to AP26.
B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547.
PrimeGrid, AP26 Search.
Eric Weisstein's World of Mathematics, Prime Arithmetic Progression.
FORMULA
a(n) = 142099325379199423 + a(n-1)*16549135*23#, where 23# := 2*3*5*7*11*13*17*19*23 = 223092870.
EXAMPLE
a(26) = 142099325379199423 + 25*16549135*223092870 = 234399175958385673 is prime.
MAPLE
seq(142099325379199423+(n-1)*3691994023167450, n=1..26);
MATHEMATICA
Table[142099325379199423 + (n - 1) 3691994023167450, {n, 1, 26}]
PROG
(GAP) List([1..26], n->142099325379199423+(n-1)*3691994023167450);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Marco Ripà, Aug 10 2018
STATUS
approved