login
A317508
Number of ways to split the integer partition with Heinz number n into consecutive subsequences with weakly decreasing sums.
8
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 6, 1, 2, 2, 7, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 7, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 9, 1, 2, 3, 4, 2, 4, 1, 11, 5, 2, 1, 8, 2, 2
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The a(60) = 7 split partitions:
(3)(2)(1)(1)
(32)(1)(1)
(3)(21)(1)
(3)(2)(11)
(321)(1)
(32)(11)
(3211)
MATHEMATICA
comps[q_]:=Table[Table[Take[q, {Total[Take[c, i-1]]+1, Total[Take[c, i]]}], {i, Length[c]}], {c, Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Length[Select[compositionPartitions[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]], OrderedQ[Total/@#]&]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 29 2018
STATUS
approved