login
Number of nX4 0..1 arrays with every element unequal to 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Jul 28 2018 20:51:29

%S 2,10,36,72,353,1525,5601,20603,93180,376067,1440298,6219533,25449350,

%T 101546963,425583385,1746282597,7098263711,29371457881,120619016253,

%U 493714118241,2033241533001,8352126707843,34269831877530,140900257953996

%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A317458.

%H R. H. Hardin, <a href="/A317454/b317454.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A317454/a317454.txt">Empirical recurrence of order 64</a>

%F Empirical recurrence of order 64 (see link above)

%e Some solutions for n=5

%e ..0..0..1..0. .0..1..1..1. .0..0..1..0. .0..0..1..0. .0..1..1..0

%e ..1..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..1. .0..1..1..0

%e ..0..0..0..0. .1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1

%e ..1..0..0..1. .1..0..1..0. .0..0..0..1. .1..0..0..0. .0..1..1..0

%e ..1..0..0..0. .1..1..1..1. .0..1..0..0. .0..0..1..1. .1..1..1..0

%Y Cf. A317458.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 28 2018