login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317384
Smallest positive integer that has exactly n representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of (not necessarily distinct) primes.
3
2, 1, 13, 31, 43, 91, 111, 231, 175, 274, 351, 471, 703, 526, 463, 931, 823, 1723, 1579, 1279, 1903, 2083, 1791, 2143, 2227, 2443, 2671, 2781, 2335, 3807, 3163, 3631, 3199, 4243, 5314, 5482, 5107, 4671, 6231, 6681, 8863, 7483, 6111, 6331, 7879, 8031, 8023, 9351
OFFSET
0,1
LINKS
FORMULA
a(n) = min { j > 0 : A317240(j) = n }.
EXAMPLE
a(1) = 1: 1.
a(2) = 13: 1 + 2 * (1 + 5) = 1 + 3 * (1 + 3) = 13.
a(3) = 31: 1 + 2 * (1 + 2 * (1 + 2 * (1 + 2))) = 1 + 3 * (1 + 3 * (1 + 2)) = 1 + 5 * (1 + 5) = 31.
MAPLE
b:= proc(n) option remember; `if`(n=1, 1,
add(b((n-1)/p), p=numtheory[factorset](n-1)))
end:
a:= proc(n) option remember; local k;
for k while n<>b(k) do od; k
end:
seq(a(n), n=0..50);
MATHEMATICA
pp[n_] := pp[n] = FactorInteger[n][[All, 1]];
q[n_] := q[n] = Switch[n, 1, True, 2, False, _, AnyTrue[pp[n-1], q[(n-1)/#]&]];
b[n_] := b[n] = Which[n == 1, 1, ! q[n], 0, True, Sum[b[(n-1)/p], {p, pp[n-1]}]];
a[n_] := Module[{k}, For[k = 1, True, k++, If[n == b[k], Return[k]]]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 07 2023, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A174170 A264373 A217490 * A247601 A013020 A012906
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 26 2018
STATUS
approved