login
A317028
Triangle read by rows: T(0,0) = 1; T(n,k) = 8 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
2
1, 8, 64, 1, 512, 16, 4096, 192, 1, 32768, 2048, 24, 262144, 20480, 384, 1, 2097152, 196608, 5120, 32, 16777216, 1835008, 61440, 640, 1, 134217728, 16777216, 688128, 10240, 40, 1073741824, 150994944, 7340032, 143360, 960, 1, 8589934592, 1342177280, 75497472, 1835008, 17920, 48
OFFSET
0,2
COMMENTS
The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038279 ((8+x)^n).
The coefficients in the expansion of 1/(1-8x-x^2) are given by the sequence generated by the row sums.
The row sums are Denominators of continued fraction convergents to sqrt(17), see A041025.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 8.12310562561766054982... (a metallic mean), when n approaches infinity (see A176458: (4+sqrt(17))).
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98
EXAMPLE
Triangle begins:
1;
8;
64, 1;
512, 16;
4096, 192, 1;
32768, 2048, 24;
262144, 20480, 384, 1;
2097152, 196608, 5120, 32;
16777216, 1835008, 61440, 640, 1;
134217728, 16777216, 688128, 10240, 40;
1073741824, 150994944, 7340032, 143360, 960, 1;
8589934592, 1342177280, 75497472, 1835008, 17920, 48;
68719476736, 11811160064, 754974720, 22020096, 286720, 1344, 1;
549755813888, 103079215104, 7381975040, 251658240, 4128768, 28672, 56;
4398046511104, 893353197568, 70866960384, 2768240640, 55050240, 516096, 1792, 1;
MATHEMATICA
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
PROG
(PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 8*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
CROSSREFS
Row sums give A041025.
Cf. A001018 (column 0), A053539 (column 1), A081138 (column 2), A140802 (column 3), A172510 (column 4).
Sequence in context: A189943 A358324 A137664 * A014392 A008462 A043078
KEYWORD
tabf,nonn,easy
AUTHOR
Zagros Lalo, Jul 19 2018
STATUS
approved