OFFSET
1,4
COMMENTS
In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes.
FORMULA
a(prime^n) = A000041(n).
a(squarefree) = 1.
EXAMPLE
The a(36) = 7 factorizations are (2*2*3*3), (2*2*9), (2*3*6), (3*3*4), (2*18), (3*12), (4*9). Missing from this list are (6*6) and (36).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
Table[Length[Select[facs[n], UnsameQ@@dual[primeMS/@#]&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
STATUS
approved