OFFSET
1,3
COMMENTS
For coprime p,q the group SL(p*q, Z(n)) is isomorphic to the direct product of the two groups SL(p, Z(n)) and SL(q, Z(n)).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..3478 (first 60 rows)
FORMULA
T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) A316586(n,d).
EXAMPLE
Triangle begins:
1;
1, 3, 2;
1, 1, 8, 6, 0, 8;
1, 7, 8, 24, 0, 8;
1, 1, 20, 30, 24, 20, 0, 0, 0, 24;
1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
1, 15, 32, 144, 0, 96, 0, 96;
1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
...
PROG
(PARI)
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++; N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L<t, listput(L, 0)); L[t]++ ))))); Vec(L)}
for(n=1, 9, print(row(n)));
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Jul 06 2018
STATUS
approved