login
A316393
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of six.
2
1, 6, 261, 1890, 52022, 455231, 11174035, 116105272, 2810232512, 34036483163, 844691910962, 11731978216291, 303637667232802, 4769379288424677, 129700918311614279, 2277005590881369266, 65261900211279910831, 1267764017301809851710, 38324737795523150842616
OFFSET
6,2
LINKS
FORMULA
a(n) = A262168(n) - A262167(n).
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
a:= n-> b(n, 0$2, 6)-b(n, 0$2, 5):
seq(a(n), n=6..24);
CROSSREFS
Column k=6 of A258829.
Sequence in context: A015020 A225166 A003384 * A366226 A332126 A229579
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 01 2018
STATUS
approved