login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316266
FDH numbers of strict integer partitions with prime parts and prime length.
2
12, 21, 28, 33, 44, 57, 75, 76, 77, 84, 100, 123, 132, 133, 141, 164, 175, 183, 188, 209, 228, 231, 244, 249, 275, 287, 291, 300, 308, 329, 332, 363, 388, 399, 417, 427, 451, 453, 475, 484, 492, 507, 517, 525, 532, 556, 564, 581, 591, 604, 627, 671, 676, 679
OFFSET
1,1
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).
EXAMPLE
Sequence of strict integer partitions with prime parts and prime length, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
28: (5,3)
33: (7,2)
44: (7,3)
57: (11,2)
75: (13,2)
76: (11,3)
77: (7,5)
84: (5,3,2)
MATHEMATICA
nn=1000;
FDfactor[n_]:=If[n==1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor, nn, 1, Union]; FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Select[Range[nn], And[PrimeQ[Length[FDfactor[#]]], And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 28 2018
STATUS
approved