login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.
0

%I #23 Aug 10 2022 22:35:45

%S 4,6,8,10,14,15,20,21,24,25,26,30,35,36,39,40,45,46,50,52,54,55,56,62,

%T 65,66,68,69,72,76,78,82,84,88,90,91,92,93,94,98,102,104,108,114,117,

%U 118,120,124,126,130,132,134,136,140,141,143,144,146,147,150

%N Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.

%e 2 divides both 4 and floor(phi*4)=6, so 4 is a term.

%p select(n->gcd(n,floor(((sqrt(5)-1)/2)*n))>1,[$1..160]); # _Muniru A Asiru_, Jun 28 2018

%t Select[Range[150], GCD[#, Floor[GoldenRatio #]] > 1 &] (* _Giovanni Resta_, Jun 28 2018 *)

%o (PARI) is(n) = gcd(n, floor((sqrt(5)-1)/2*n)) > 1 \\ _Felix Fröhlich_, Jun 29 2018

%o (Python)

%o from math import gcd, isqrt

%o from itertools import count, islice

%o def A316262_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n:gcd(n,n+isqrt(5*n**2)>>1)>1,count(max(startvalue,1)))

%o A316262_list = list(islice(A316262_gen(),30)) # _Chai Wah Wu_, Aug 10 2022

%Y Cf. A000201, A001622.

%K nonn

%O 1,1

%A _David V. Feldman_, Jun 27 2018