login
A316140
Denominator of the autosequence 2/((n+2)*(n+3)) difference table written by antidiagonals.
0
3, 6, 6, 10, 15, 10, 15, 30, 30, 15, 21, 105, 70, 105, 21, 28, 84, 140, 140, 84, 28, 36, 126, 252, 315, 252, 126, 36, 45, 180, 420, 630, 630, 420, 180, 45, 55, 495, 660, 1155, 1386, 1155, 660, 495, 55, 66, 330
OFFSET
0,1
EXAMPLE
Difference table:
1/3, 1/6, 1/10, 1/15, ...
-1/6, -1/15, -1/30, -2/105, ...
1/10, 1/30, 1/70, 1/140, ...
-1/15, -2/105, -1/140, -1/315, ... .
...
Table starts:
3 6 10 15 21 28 ...
6 15 30 105 84 126 ...
10 30 70 140 252 420 ...
15 105 140 315 630 1155 ...
21 84 252 630 1386 2772 ...
...
As a triangle:
3;
6, 6;
10, 15, 10;
15, 30, 30, 15;
...
PROG
(PARI) tabl(nn) = {nn = 2*nn; m = matrix(nn, nn, n, k, if (n==1, 2/((k+1)*(k+2)))); for (n=2, nn, for (k=1, nn-n +1, m[n, k] = m[n-1, k+1] - m[n-1, k]; ); ); nn = nn/2; matrix(nn, nn, n, k, denominator(m[n, k])); } \\ Michel Marcus, Jul 05 2018
CROSSREFS
Cf. A000217, A003506, A033876? (main diagonal), A059481, A109613.
Sequence in context: A333616 A316563 A349212 * A147849 A332546 A002853
KEYWORD
nonn,frac,tabl,more
AUTHOR
Paul Curtz, Jun 25 2018
STATUS
approved