Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 31 2023 11:32:37
%S 2,0,8,6,1,3,0,1,9,7,6,5,1,4,9,4,0,9,1,2,4,9,6,2,1,6,3,7,2,3,8,5,9,9,
%T 8,7,6,9,7,9,9,8,7,8,2,7,5,7,6,7,2,9,9,5,1,3,8,1,7,3,3,1,3,1,1,1,0,2,
%U 2,8,5,7,7,0,7,8,9,0,4,7,4,9,9,4,2,5
%N Decimal expansion of the greatest x such that 1/x + 1/(x+1) + 1/(x+3) = 1.
%C Equivalently, the greatest root of x^3 + x^2 - 5*x - 3;
%C Least root: A316131;
%C Middle root: A316132.
%C See A305328 for a guide to related sequences.
%F greatest root: -1/3 + (8/3)*cos((1/3)*arctan((9*sqrt(47))/17))
%F middle: -1/3 - (4/3)*cos((1/3)*arctan((9*sqrt(47))/17)) + (4*sin((1/3)*arctan((9*sqrt(47))/17)))/sqrt(3)
%F least: -1/3 - (4/3)*cos((1/3)*arctan((9*sqrt(47))/17)) - (4*sin((1/3)*arctan((9*sqrt(47))/17)))/sqrt(3)
%e greatest root: 2.0861301976514940912...
%e middle root: -0.57199326831620301856...
%e least root: -2.5141369293352910727...
%t a = 1; b = 1; c = 1; u = 0; v = 1; w = 3; d = 1;
%t r[x_] := a/(x + u) + b/(x + v) + c/(x + w);
%t t = x /. ComplexExpand[Solve[r[x] == d, x]]
%t N[t, 20]
%t u = N[t, 200];
%t RealDigits[u[[1]]] (* A316131 *)
%t RealDigits[u[[2]]] (* A316132 *)
%t RealDigits[u[[3]]] (* A316133 *)
%t RealDigits[Root[x^3+x^2-5x-3,3],10,120][[1]] (* _Harvey P. Dale_, Dec 31 2023 *)
%o (PARI) solve(x=2, 3, x^3+x^2-5*x-3) \\ _Altug Alkan_, Aug 01 2018
%Y Cf. A305328, A316131, A316132.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Jun 28 2018