login
A309595
Digits of the 10-adic integer (-31/9)^(1/3).
3
1, 8, 0, 1, 1, 8, 6, 6, 4, 1, 6, 0, 3, 9, 9, 0, 9, 3, 8, 0, 7, 1, 6, 5, 5, 2, 0, 8, 8, 4, 6, 7, 9, 8, 3, 0, 6, 7, 0, 7, 4, 0, 5, 9, 9, 5, 2, 0, 6, 7, 8, 9, 7, 8, 7, 2, 1, 2, 0, 7, 4, 8, 8, 4, 3, 6, 0, 6, 8, 2, 1, 4, 2, 8, 6, 7, 0, 5, 7, 4, 9, 7, 7, 5, 8, 4, 5, 9, 5, 7, 8, 4, 7, 9, 4, 4, 3, 7, 9, 1
OFFSET
0,2
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 31) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
1^3 == 1 (mod 10).
81^3 == 41 (mod 10^2).
81^3 == 441 (mod 10^3).
1081^3 == 4441 (mod 10^4).
11081^3 == 44441 (mod 10^5).
811081^3 == 444441 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-31/9+O(2^N))^(1/3), 2^N), Mod((-31/9+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309595(n)
ary = [1]
a = 1
n.times{|i|
b = (a + 7 * (9 * a ** 3 + 31)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309595(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 10 2019
STATUS
approved