login
A309573
a(n) is the sum of lattice points enumerated by the square number spiral falling on the circumference of circles centered at the origin of radii n.
0
0, 16, 64, 144, 256, 912, 576, 784, 1024, 1296, 3648, 1936, 2304, 7312, 3136, 8208, 4096, 11824, 5184, 5776, 14592, 7056, 7744, 8464, 9216, 41232, 29248, 11664, 12544, 27568, 32832, 15376, 16384, 17424, 47296, 44688, 20736, 61104, 23104, 65808, 58368, 78096, 28224, 29584, 30976, 73872
OFFSET
0,2
COMMENTS
For this sequence the square spiral begins with 0 and is the second illustration in the comments of A317186, where 0 is the origin of our circles.
a(n) >= A001107(n) + A033991(n) + A007742(n) + A033954(n).
a(n) = A016802(n) iff A046109(n) = 4.
a(n) = A016802(n) iff n <> k * A002144(m), k,m >= 1.
a(n) is congruent to 0 mod 16 and is the sum of one or more terms of A016802.
Conjecture: a(n) is a term of A277699 iff a(n)/16 = A277699(n).
LINKS
Eric Weisstein's World of Mathematics, Circle Lattice Points
EXAMPLE
16 is a term because 16 = 16*(1)^2.
912 is a term because 912 = 16*(5)^2 + (2*(16*(4)^2)).
41232 is a term because 41232 = 16*(25)^2 + (2*((16*(24)^2) + (16*(20)^2))).
PROG
(PARI) Tb(n) = {return(16 * n * n)}
llsum(n) = {my(x=0); for (i = 1, n - 2, for (ii = i+1, n - 1, if(n*n == (ii*ii) + (i*i), x+=(2 * Tb(ii))))); return(x)}
Tx(n) = {my(x=0); forprimestep(x = 5, n, 4, if(n%x==0, return(llsum(n))))}
Tn(n) = {for (i = 0, n, print1(Tb(i) + Tx(i), ", "))}
Tn(45)
KEYWORD
nonn,changed
AUTHOR
Torlach Rush, Aug 08 2019
STATUS
approved