login
A309098
Number of partitions of n avoiding the partition (4,3).
3
1, 1, 2, 3, 5, 7, 11, 14, 20, 25, 33, 39, 51, 58, 72, 82, 99, 110, 131, 143, 168, 183, 210, 226, 259, 277, 312, 333, 372, 394, 439, 462, 511, 537, 588, 617, 675, 705, 765, 798, 864, 898, 970, 1005, 1081, 1121, 1199, 1240, 1326, 1369, 1459, 1505, 1599, 1646
OFFSET
0,3
COMMENTS
We say a partition alpha contains mu provided that one can delete rows and columns from (the Ferrers board of) alpha and then top/right justify to obtain mu. If this is not possible then we say alpha avoids mu. For example the only partitions avoiding (2,1) are those whose Ferrers boards are rectangles.
LINKS
Jonathan Bloom, Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
J. Bloom and D. Saracino, On Criteria for rook equivalence of Ferrers boards, arXiv:1808.04221 [math.CO], 2018.
J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018.
J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, European J. Combin., 71 (2018), 246-267.
J. Bloom and D. Saracino, On Criteria for rook equivalence of Ferrers boards, European J. Combin., 76 (2018), 199-207.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan S. Bloom, Jul 12 2019
EXTENSIONS
More terms from Alois P. Heinz, Jul 12 2019
STATUS
approved