login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308849
Expansion of e.g.f. 1 / (BesselI(0,2*x) + BesselI(1,2*x)).
2
1, -1, 0, 3, -6, -10, 100, -175, -1470, 11214, -4032, -447678, 2813580, 8767044, -254393568, 1156311585, 14213048850, -237139066450, 423094740640, 26925567437054, -323136231452892, -998293111680228, 67449022208054760, -562713810943757746, -7585754355598687268, 220643947556639812100
OFFSET
0,4
COMMENTS
E.g.f. is inverse of e.g.f. for A001405.
FORMULA
E.g.f.: 1 / Sum_{k>=0} binomial(k,floor(k/2))*x^k/k!.
MATHEMATICA
nmax = 25; CoefficientList[Series[1/(BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[k, Floor[k/2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
CROSSREFS
Sequence in context: A351131 A061380 A350993 * A354000 A368173 A125567
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 28 2019
STATUS
approved