login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308694
Square array A(n,k), n >= 1, k >= 0, where A(n,k) = Sum_{d|n} d^(k*(n/d - 1)), read by antidiagonals.
5
1, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 2, 2, 6, 2, 4, 1, 2, 2, 10, 2, 9, 2, 1, 2, 2, 18, 2, 27, 2, 4, 1, 2, 2, 34, 2, 93, 2, 14, 3, 1, 2, 2, 66, 2, 339, 2, 82, 11, 4, 1, 2, 2, 130, 2, 1269, 2, 578, 83, 23, 2, 1, 2, 2, 258, 2, 4827, 2, 4354, 731, 283, 2, 6
OFFSET
1,3
LINKS
FORMULA
L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j^(k+1))).
A(p,k) = 2 for prime p.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
2, 2, 2, 2, 2, 2, 2, ...
3, 4, 6, 10, 18, 34, 66, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 9, 27, 93, 339, 1269, 4827, ...
2, 2, 2, 2, 2, 2, 2, ...
MATHEMATICA
T[n_, k_] := DivisorSum[n, #^(k*(n/# - 1)) &]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
CROSSREFS
Columns k=0..3 give A000005, A087909, A308692, A308693.
Sequence in context: A053260 A267135 A140223 * A280521 A278043 A014643
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 17 2019
STATUS
approved