login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308692
a(n) = Sum_{d|n} d^(2*(n/d - 1)).
5
1, 2, 2, 6, 2, 27, 2, 82, 83, 283, 2, 2047, 2, 4147, 7188, 20546, 2, 125964, 2, 343407, 533844, 1048699, 2, 10076747, 390627, 16777387, 43053284, 84003927, 2, 667311413, 2, 1342439682, 3486799044, 4294967587, 249905428, 52916914768, 2, 68719477099, 282429565044
OFFSET
1,2
LINKS
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - k^2*x^k)^(1/k^3)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = 2 for prime p.
G.f.: Sum_{k>=1} x^k/(1 - k^2*x^k). - Ilya Gutkovskiy, Jul 25 2019
MAPLE
N:=100: # for a(1)..a(N)
g:= add(x^k/(1-k^2*x^k), k=1..N):
S:= series(g, x, N+1):
seq(coeff(S, x, j), j=1..N); # Robert Israel, Apr 05 2020
MATHEMATICA
a[n_] := DivisorSum[n, #^(2*(n/# - 1)) &]; Array[a, 39] (* Amiram Eldar, May 09 2021 *)
PROG
(PARI) {a(n) = sumdiv(n, d, d^(2*(n/d-1)))}
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k^2*x^k)^(1/k^3)))))
CROSSREFS
Column k=2 of A308694.
Sequence in context: A100346 A359004 A306387 * A319352 A300834 A293214
KEYWORD
nonn,look
AUTHOR
Seiichi Manyama, Jun 17 2019
STATUS
approved