Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 May 09 2021 02:51:05
%S 1,1,3,1,3,4,1,3,4,7,1,3,4,9,6,1,3,4,13,6,12,1,3,4,21,6,24,8,1,3,4,37,
%T 6,66,8,15,1,3,4,69,6,216,8,41,13,1,3,4,133,6,762,8,201,37,18,1,3,4,
%U 261,6,2784,8,1289,253,68,12,1,3,4,517,6,10386,8,9225,2197,648,12,28
%N Square array A(n,k), n >= 1, k >= 0, where A(n,k) = Sum_{d|n} d^(k*n/d - k + 1), read by antidiagonals.
%H Seiichi Manyama, <a href="/A308690/b308690.txt">Antidiagonals n = 1..140, flattened</a>
%F L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j^k)).
%F A(p,k) = p+1 for prime p.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 3, 3, 3, 3, 3, 3, 3, ...
%e 4, 4, 4, 4, 4, 4, 4, ...
%e 7, 9, 13, 21, 37, 69, 133, ...
%e 6, 6, 6, 6, 6, 6, 6, ...
%e 12, 24, 66, 216, 762, 2784, 10386, ...
%e 8, 8, 8, 8, 8, 8, 8, ...
%t T[n_, k_] := DivisorSum[n, #^(k*n/# - k + 1) &]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Amiram Eldar_, May 09 2021 *)
%Y Columns k=0..3 give A000203, A055225, A308688, A308689.
%Y Cf. A294579, A308509, A308694.
%K nonn,tabl
%O 1,3
%A _Seiichi Manyama_, Jun 17 2019