login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308688
a(n) = Sum_{d|n} d^(2*n/d - 1).
4
1, 3, 4, 13, 6, 66, 8, 201, 253, 648, 12, 5488, 14, 8550, 22824, 49681, 18, 316743, 20, 865578, 1611152, 2098506, 24, 27246276, 1953151, 33556656, 129199240, 202152908, 30, 1758141606, 32, 3223326753, 10460514288, 8589939540, 1261056768, 146050621105, 38
OFFSET
1,2
LINKS
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - k^2*x^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = p+1 for prime p.
G.f.: Sum_{k>=1} k*x^k/(1 - k^2*x^k). - Ilya Gutkovskiy, Jul 25 2019
MATHEMATICA
a[n_] := DivisorSum[n, #^(2*n/# - 1) &]; Array[a, 37] (* Amiram Eldar, May 09 2021 *)
PROG
(PARI) {a(n) = sumdiv(n, d, d^(2*n/d-1))}
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k^2*x^k)^(1/k^2)))))
CROSSREFS
Column k=2 of A308690.
Sequence in context: A324159 A220847 A127611 * A324501 A359112 A342675
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 17 2019
STATUS
approved