login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308687
a(n) = A305312(n)/4 if A305312(n)is even and a(n) = (A305312(n) - 1)/4 if A305312(n) is odd, for n >= 1.
0
1, 8, 55, 379, 1891, 2600, 17821, 64261, 84680, 122149, 421849, 837224, 2183005, 3950155, 5738419, 18883369, 39331711, 74157931, 94070600, 128629621, 185381839, 269583560, 486268651, 1847753209, 2519186671, 3192137000, 4210906771, 6000283981, 8707689224, 12664688905, 20977322059, 41089519729, 85578188905, 86805069128, 195388310755, 409067053471
OFFSET
1,2
COMMENTS
These numbers a(n), depending on the parity of the discriminants of Markoff forms Disc(n) = b(n)*(b(n) + 4) = A305312(n), with b(n) = A324250(n), enter the definition of representative parallel forms of Disc(n) and representation -m(n)^2, where m(n) = A002559(n) = (b(n) + 2)/3 are the Markoff numbers, in the following way. FPara(n) := [-m(n)^2, 2*j(n), -(j^2(n) - a(n))/m(n)^2] or [-m(n)^2, 2*j(n) + 1, -(j(n)^2 +j(n) - a(n))/m(n)^2], if Disc(n) is even or odd, respectively, with j(n) from the interval [0, m(n)^2 - 1] such that the third member of FPara(n) becomes an integer. See the W. Lang link in A324251, section 3 for representative parallel forms, and the Buell and Scholz-Schoeneberg references given there.
The trivial solution (x = 1, y = 0) of each of the #rpapfs (number of representative parallel and primitive forms) Fpara(n;k), for k = 1, 2, ..., #rpapfs, representing -m(n)^2 leads to a fundamental solution of any primitive form F = [a, b, c] = a*x^2 + b*x*y + c*y^2 of discriminant Disc := b^2 - 4*a*c and representing - m(n)^2, by a certain proper (determinant +1) equivalence transformation. For the Markoff triples the principal reduced form F_p = [1, b(n), -b(n)], representing -m(n)^2 is of interest. It is a member of a 2-cycle of reduced forms together with F = [-b(n), b(n), 1].
FORMULA
a(n) = A305312(n)/4 or a(n) = (A305312(n) - 1)/4 if A305312(n) is even or odd, respectively, where A305312(n) = Disc(n) = b(n)*(b(n) + 4) with b(n) = 3*m(n) - 2 = A324250(n), and m(n) = A002559(n), for n >= 1.
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jul 15 2019
STATUS
approved