login
A308537
a(n) = exp(-1) * Sum_{k>=0} (k + n - 1)!^n/(k!*(k - 1)!^n).
0
1, 1, 27, 104149, 192052025697, 401307330353526478576, 1891640643805444860923624673784723, 35720630453521390599442254755998585843785410691847, 4425335738067265257031641848982502946902371654704454173556393591653249
OFFSET
0,3
FORMULA
a(n) = A182933(n,n).
MATHEMATICA
Table[Exp[-1] Sum[(k + n - 1)!^n/(k! (k - 1)!^n), {k, 0, Infinity}], {n, 0, 8}]
CROSSREFS
Main diagonal of A182933.
Sequence in context: A034206 A085536 A008974 * A281956 A068738 A377768
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2019
STATUS
approved