OFFSET
0,13
COMMENTS
Number of partitions of n into parts congruent to {0, 5, 7} mod 12.
Convolution inverse of A247223.
FORMULA
G.f.: 1 / Sum_{k>=1} (-x)^A036498(k).
G.f.: Product_{k>=1} 1 / ((1 - x^(12*k - 7)) * (1 - x^(12*k - 5)) * (1 - x^(12*k))).
a(n) ~ (sqrt(3) - 1) * exp(sqrt(n/6)*Pi) / (2^(5/2)*n). - Vaclav Kotesovec, May 25 2019
MATHEMATICA
nmax = 78; CoefficientList[Series[1/Sum[(-x)^(k (6 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x]
nmax = 78; CoefficientList[Series[Product[1/((1 - x^(12 k - 7)) * (1 - x^(12 k - 5)) * (1 - x^(12 k))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 24 2019
STATUS
approved