login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308391
Number of ordered pairs of n-digit positive integers the product of which is a 2n-digit integer.
0
58, 6610, 668843, 66965113, 6697324753, 669740590290, 66974140069358, 6697414817000983, 669741489800555031, 66974149061059480123
OFFSET
1,1
FORMULA
a(n) = 9*10^(2n-1) - 10^n - Sum_{k=10^(n-1)+1..10^n-1} ceiling(10^(2n-1)/k).
a(n) ~ (9-log(10))*10^(2n-1).
EXAMPLE
a(1)=58 since we get the following pairs: (2, 5), ..., (2, 9), (3, 4), ..., (3, 9), (4, 3), ..., (4, 9), (5, 2), ..., (5, 9), (6, 2), ..., (6, 9), (7, 2), ..., (7, 9), (8, 2), ..., (8, 9), (9, 2), ..., (9, 9).
PROG
(Python)
import math
ende = 1
for i in range(1, 10):
anz = 0
for a in range(ende, 10*ende):
z = math.ceil((ende*ende*10)/a)
if z < ende*10:
anz = anz + ende*10 - z
ende = ende*10
print(i, anz)
(PARI) a(n) = 9*10^(2*n-1) - 10^n - sum(k=10^(n-1)+1, 10^n-1, ceil(10^(2*n-1)/k)); \\ Michel Marcus, Jun 25 2019
CROSSREFS
Cf. A174425.
Sequence in context: A042625 A250919 A282438 * A128934 A173955 A243466
KEYWORD
nonn,base,more
AUTHOR
Reiner Moewald, May 23 2019
STATUS
approved