login
A308293
Lexicographically earliest sequence of positive terms such that a(1) = 1, a(2) = 2, and for any n > 0, (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) is unique.
1
1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 4, 1, 1, 4, 5, 1, 1, 5, 1, 2, 4, 6, 1, 1, 6, 1, 4, 6, 2, 1, 6, 2, 7, 1, 1, 7, 1, 8, 1, 1, 8, 3, 1, 7, 8, 1, 2, 5, 8, 1, 9, 1, 1, 9, 3, 1, 8, 9, 1, 3, 6, 10, 1, 1, 10, 1, 5, 8, 2, 10, 1, 8, 10, 1, 11, 1, 1, 11, 4, 1, 9, 10, 1
OFFSET
1,2
COMMENTS
This sequence shows chaotic behavior (see scatterplot in Links section).
This behavior is determined by the choice of the two leading terms.
The variant, say b, with b(1) = b(2) = 1, corresponds to the natural numbers interspersed with pairs of ones: 1,1,1, 2,1,1, 3,1,1, etc. (b(n) = abs(A157128(n))).
EXAMPLE
The first terms, alongside (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))), are:
n a(n) (abs(a(n+2)-a(n)),abs(a(n+2)-a(n+1)))
-- ---- -------------------------------------
1 1 (0,1)
2 2 (1,0)
3 1 (0,0)
4 1 (1,1)
5 1 (2,1)
6 2 (1,2)
7 3 (2,0)
8 1 (2,2)
9 1 (0,2)
10 3 (1,3)
11 1 (0,3)
12 4 (3,0)
13 1 (3,3)
14 1 (4,1)
15 4 (3,4)
PROG
(C) See Links section.
CROSSREFS
See A080427 for a simpler variant.
Cf. A157128.
Sequence in context: A331958 A319193 A097886 * A249298 A088863 A053283
KEYWORD
nonn
AUTHOR
Rémy Sigrist, May 19 2019
STATUS
approved