login
A308210
Number of integer-sided triangles with perimeter n and sides a, b and c such that a <= b <= c and the length of side b is coprime to n.
0
0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 4, 1, 5, 2, 2, 3, 8, 3, 10, 4, 4, 5, 14, 3, 13, 7, 12, 8, 21, 6, 24, 11, 12, 12, 20, 10, 33, 15, 18, 12, 40, 12, 44, 20, 28, 22, 52, 15, 48, 21, 32, 28, 65, 21, 50, 26, 40, 35, 80, 20, 85, 40, 56, 43, 70, 30, 102, 48, 60, 34
OFFSET
1,7
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * [gcd(i,n) = 1], where [] is the Iverson bracket.
MATHEMATICA
Table[Sum[Sum[Floor[1/GCD[i, n]] Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A308209.
Sequence in context: A348647 A254048 A306671 * A112331 A133910 A345938
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 15 2019
STATUS
approved