login
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
4
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
OFFSET
0,8
LINKS
FORMULA
A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
MATHEMATICA
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, _] = 1; A[_, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
CROSSREFS
Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.
Sequence in context: A362079 A055137 A143325 * A128888 A305401 A306100
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 05 2019
STATUS
approved