OFFSET
1,3
FORMULA
G.f.: x * (1 + Sum_{n>=1} tau(n)*a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{i>=1, j>=1} (1 - x^(i*j))^(a(i*j)/(i*j))) = Sum_{n>=1} a(n+1)*x^n/n.
MATHEMATICA
a[n_] := a[n] = Sum[DivisorSigma[0, d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 30}]
a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[DivisorSigma[0, k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 30}]
PROG
(PARI) a(n) = if (n==1, 1, sumdiv(n-1, d, numdiv(d)*a(d))); \\ Michel Marcus, Apr 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 29 2019
STATUS
approved