login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307718
Primes p such that a + b is prime and a^2 + b^2 = p^2 and p = c + d such that c^2 + d^2 = e^2.
1
17, 73, 97, 113, 137, 193, 233, 313, 337, 401, 449, 457, 521, 569, 641, 673, 809, 929, 977, 1009, 1049, 1129, 1153, 1201, 1217, 1249, 1289, 1297, 1361, 1409, 1481, 1609, 1697, 1873, 1889, 1913, 2017, 2137, 2153, 2273, 2281, 2377, 2393, 2417, 2441, 2521, 2969, 3001
OFFSET
1,1
COMMENTS
a^2 + b^2 = p^2 is a primitive Pythagorean triple since the hypotenuse is prime.
c^2 + d^2 = e^2 also appears to be a primitive Pythagorean triple.
EXAMPLE
17 is a term because 15 + 8 = 23 and 15^2 + 8^2 = 17^2 and 17 = 5 + 12 and 5^2 + 12^2 = 13^2.
PROG
(PARI) isok2(p) = {for (k=1, p-1, if (issquare(zz=k^2+(p-k)^2), return (zz); ); ); return(0); }
isok1(p) = {forprime (pp=2, 2*p, for (i=1, pp-1, if (issquare(z=i^2+(pp-i)^2) && (p==sqrtint(z)) && (zz=isok2(p)), return (1); ); ); ); return(0); }
isok(p) = isprime(p) && isok1(p); \\ Michel Marcus, Apr 26 2019
(PARI) \\ uses isok2 from above but much quicker version
is(n)=if(n%4 != 1 || !isprime(n), return(0)); my(v=thue(T, n^2)); for(i=1, #v, if(v[i][1]>0 && v[i][2]>=v[i][1] && isprime(vecsum(v[i])), return(1))); 0; \\ A283391
lista(nn) = T=thueinit('x^2+1, 1); forprime(p=2, nn, if (is(p) && isok2(p), print1(p, ", "))); \\ Michel Marcus, Apr 27 2019
CROSSREFS
Subsequence of A002144. Subsequence of A283391.
Sequence in context: A039371 A245042 A144245 * A139919 A043194 A043974
KEYWORD
nonn
AUTHOR
Torlach Rush, Apr 23 2019
STATUS
approved