login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307663
a(n) = (n-1)!*(Sum_{i=1..n} Sum_{j=1..i} binomial(i,j)*i/j).
1
1, 6, 41, 329, 3090, 33654, 420792, 5981688, 95782320, 1712555280, 33909364800, 737868052800, 17521164259200, 451126883894400, 12522623670144000, 372847351488998400, 11853064556660275200, 400718191717647820800, 14354714544806716416000, 543129329390299739136000, 21642934280974058207232000
OFFSET
1,2
LINKS
FORMULA
Conjectures from Robert Israel, Oct 26 2020: (Start)
E.g.f. ((4*x^2 - 8*x + 5)*log(-x + 1))/(2*(x - 1)^2) - ((4*x^2 - 8*x + 5)*log(1 - 2*x))/(2*(x - 1)^2) + x*(-6 + 5*x)/(4*(x - 1)^2).
D-finite with recurrence 2*(n+3)*(n+2)*n*(n-2)*a(n) - (n+3)*(5*n^2-6*n-17)*a(n+1) + (4 n^2-n-29)* a(n+2) -(n-3)*a(n+3) = 0. (End)
The conjecture regarding the e.g.f. is true. See links. - Sela Fried, Jul 30 2024.
EXAMPLE
a(2) = 1! * (C(1,1)*1/1 + C(2,1)*2/1 + C(2,2)*2/2) = 6.
MATHEMATICA
Array[(# - 1)!*Sum[Sum[Binomial[i, j] i/j, {j, i}], {i, #}] &, 21] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI) a(n) = (n-1)!*sum(i=1, n, sum(j=1, i, binomial(i, j)*i/j)); \\ Michel Marcus, Apr 20 2019
CROSSREFS
Sequence in context: A095177 A199553 A225031 * A345189 A083430 A005011
KEYWORD
nonn
AUTHOR
Pedro Caceres, Apr 20 2019
STATUS
approved