login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307580
a(n) is the second multiplicative Zagreb index of the Fibonacci cube Gamma(n).
2
1, 4, 1728, 191102976, 137105941502361600000, 27038645743755029502156994133360640000000000, 645557379413314860145212937623335060473992141864960000000000000000000000000000000000000000
OFFSET
1,2
COMMENTS
The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
The second multiplicative Zagreb index of a simple connected graph is the product of deg(x)^(deg(x)) over all the vertices x of the graph (see, for example, the I. Gutman reference, p. 16).
In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825 and the KLavzar - Mollard - Petkovsek reference).
LINKS
I. Gutman, Multiplicative Zagreb indices of trees, Bulletin of International Mathematical Virtual Institute ISSN 1840-4367, Vol. 1, 2011, 13-19.
S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
FORMULA
a(n) = Product_{k=1..n} k^(k*T(n,k)), where T(n,k) = Sum_{i=0..k} binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1).
EXAMPLE
a(2) = 4 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, a(2) = 1^1*1^1*2^2 = 4.
a(4) = 191102976 because the Fibonacci cube Gamma(4) has 5 vertices of degree 2, 2 vertices of degree 3, and 1 vertex of degree 4; consequently, a(4) = (2^2)^5*(3^3)^2*4^4 = 191102976.
MAPLE
T := (n, k)-> add(binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1), i=0..k):
seq(mul(k^(k*T(n, k)), k=1..n), n=1..7);
CROSSREFS
Cf. A245825.
Sequence in context: A316484 A278794 A141090 * A255268 A079402 A198975
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 15 2019
STATUS
approved