login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307560
a(n) = smallest m such that A307629(m) = n.
2
0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 39, 49, 59, 69, 79, 89, 99, 10000000000000000000, 109, 1006, 119, 100000000000000000000000, 129, 100004, 139, 1008, 149, 100000000000000000000000000000, 159, 10000000000000000000000000000000, 169, 1019, 179, 100006
OFFSET
0,2
LINKS
Arran Ireland, Table of n, a(n) for n = 0..304 (a(0) inserted by Georg Fischer, May 05 2019)
Arran Ireland, Python program (a(0) inserted by Georg Fischer, May 05 2019)
FORMULA
Let d be the smallest divisor of n for which 9*d*(d+1) >= n; then a(n) is the smallest (d+1)-digit number whose digit sum is n/d. - Jon E. Schoenfield, Apr 15 2019
EXAMPLE
a(39) = 1039 as (1 + 0) + (1 + 3) + (1 + 9) + (0 + 3) + (0 + 9) + (3 + 9) = 39. The sums in brackets are pairs of digits of 1039. No positive integer less than 1039 has this pairwise digit sum. - David A. Corneth, Apr 16 2019
MATHEMATICA
fs[nd_, s_] := If[nd*9 < s, 0, Block[{n=10^(nd-1), f=0}, While[n < 10^nd, If[Total@ IntegerDigits@ n == s, f = n; Break[], n++]]; f]]; a[n_] := Block[{s}, Do[s = fs[d+1, n/d]; If[s > 0, Break[]], {d, Divisors[n]}]; s]; Join[{0}, Array[a, 50]] (* Giovanni Resta, Apr 15 2019 *)
PROG
(Magma) for n in [1..50] do for d in Divisors(n) do if n le 9*d*(d+1) then nd:=d+1; sdLeft:=n div d; S:=[]; for j in [1..nd-1] do if sdLeft gt 9 then S[j]:=9; else S[j]:=sdLeft-1; end if; sdLeft-:=S[j]; end for; S[nd]:=sdLeft; a:=Seqint(S); n, a; break; end if; end for; end for; // Jon E. Schoenfield, Apr 15 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Arran Ireland, Apr 14 2019
STATUS
approved