login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307469
a(n) = 2*a(n-1) + 6*a(n-2) for n >= 2, a(0) = 1, a(1) = 5.
1
1, 5, 16, 62, 220, 812, 2944, 10760, 39184, 142928, 520960, 1899488, 6924736, 25246400, 92041216, 335560832, 1223368960, 4460102912, 16260419584, 59281456640, 216125430784, 787939601408, 2872631787520, 10472901183488, 38181593092096, 139200593285120
OFFSET
0,2
COMMENTS
a(n) is the number of words of length n over alphabet {1,2,3,4,5} such that no odd letter is followed by an odd letter.
FORMULA
a(n) = (-(2/7)*sqrt(7)+1/2)*(1-sqrt(7))^n+((2/7)*sqrt(7)+1/2)*(1+sqrt(7))^n.
G.f.: (1+3*x)/(1-2*x-6*x^2).
a(n) = 3*A083099(n) + A083099(n+1). - R. J. Mathar, Jan 27 2020
EXAMPLE
For n=2 the a(2)=16 solutions are: 12, 14, 21, 22, 23, 24, 25, 32, 34, 41, 42, 43, 44, 45, 52, 54.
MAPLE
aseq:=proc(n) option remember;
if n<0 then return "seq not defined for negative indices";
elif n=0 then return 1;
elif n=1 then return 5;
else 2*aseq(n-1)+6*aseq(n-2);
end if;
end proc:
seq(aseq(n), n=0..26);
MATHEMATICA
a[0] = 1; a[1] = 5;
a[n_] := a[n] = 2*a[n - 1] + 6*a[n - 2];
Table[a[n], {n, 0, 26}]
LinearRecurrence[{2, 6}, {1, 5}, 30] (* Harvey P. Dale, Feb 20 2023 *)
CROSSREFS
The same over alphabet {1,2,3} gives A001045(n+2).
Sequence in context: A180719 A343164 A300317 * A197549 A365907 A034532
KEYWORD
nonn,easy
AUTHOR
Armend Shabani, Apr 09 2019
STATUS
approved