Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 02 2019 19:16:10
%S 2,17,347,521,10601,32027,39569,58061,62969,100469,109541,120401,
%T 398129,426383,434261,829883,896771,935063,1190261,1216583,1261109,
%U 1559963,1697771,2105381,2128649,2505857,2778851,2886563,2920649,3051977,3157703,3636617,4068257,5139257,5480249,5650097,5938931
%N Primes p such that p + A007953(p) is the square of a prime.
%C All terms == 2 (mod 3).
%C More than one prime p can have the same value of p + A007953(p), e.g. 528677993 + A007953(52867793) = 528678011 + A007953(528678011) = 22993^2.
%H Robert Israel, <a href="/A307315/b307315.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3)= 347 is in the sequence because 347+3+4+7=361=19^2 and 347 and 19 are primes.
%p f:= proc(q) local m,d,nmin;
%p m:= q^2;
%p d:= ilog10(m)+1;
%p nmin:= m - 9*d;
%p nmin:= nmin + ((5-nmin) mod 6);
%p op(select(t -> t + convert(convert(t,base,10),`+`)=m and isprime(t), {seq(n, n=nmin .. m-2, 6)}))
%p end proc:
%p f(2):= 2:
%p sort(map(f, [seq(ithprime(i),i=1..2000)]));
%o (PARI) is(n) = my(x=n+sumdigits(n)); isprimepower(x)==2
%o forprime(p=1, 6e6, if(is(p), print1(p, ", "))) \\ _Felix Fröhlich_, Apr 02 2019
%Y Subsequence of A242368.
%Y Cf. A007953, A062028, A228195.
%K nonn,base
%O 1,1
%A _Robert Israel_ and _Will Gosnell_, Apr 02 2019