login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307208
a(n) is the forgotten index of the Fibonacci cube Gamma(n).
1
2, 10, 52, 158, 466, 1192, 2914, 6722, 14972, 32286, 67914, 139824, 282754, 562970, 1105892, 2146846, 4124258, 7849496, 14815202, 27752338, 51632620, 95465502, 175508250, 320981472, 584214530, 1058602666, 1910305300, 3434059166, 6151218034, 10981579528
OFFSET
1,1
COMMENTS
The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
The forgotten topological index of a simple connected graph is the sum of the cubes of its vertex degrees.
In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825).
LINKS
B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4), 1184-1190, 2015.
S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
FORMULA
a(n) = Sum_{k=1..n} T(n,k)*k^3 where T(n,k) = Sum_{i=0..k} binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1).
Conjectures from Colin Barker, Mar 29 2019: (Start)
G.f.: 2*x*(1 + x + 8*x^2 - 7*x^3 + 4*x^4 - 3*x^5 + 3*x^6) / (1 - x - x^2)^4.
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
a(2) = 10 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the forgotten index is 1^3 + 1^3 + 2^3 = 10.
MAPLE
T := (n, k) -> add(binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1), i=0..k):
seq(add(T(n, k)*k^3, k=1..n), n=1..30);
PROG
(PARI) T(n, k) = sum(i=0, k, binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1));
a(n) = sum(k=1, n, T(n, k)*k^3); \\ Michel Marcus, Mar 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 28 2019
STATUS
approved