login
A306737
Irregular triangle where row n is a list of indices in A002110 with multiplicity whose product is A002182(n).
2
0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 3, 2, 3, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 4, 2, 4, 1, 1, 1, 4, 1, 2, 4, 1, 1, 2, 4, 2, 2, 4, 1, 1, 1, 2, 4, 1, 2, 2, 4, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 1, 2, 5, 2, 2, 2, 4, 1, 1, 1, 3, 4, 1, 1, 2, 5, 2, 2, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 1, 1, 1, 1, 2, 5
OFFSET
1,5
COMMENTS
Each highly composite number A002182(n) can be expressed as a product of primorials in A002110.
Row 1 = {0} by convention.
Maximum value in row n is given by A001221(A002182(n)).
Row n in reverse order is the conjugate of A067255(A002182(n)), a list of the multiplicities of the prime divisors of A002182(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10198, rows 1 <= n <= 1200, flattened.
Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
EXAMPLE
Terms in the first rows n of this sequence, followed by the corresponding primorials whose product = A002182(n):
n T(n,k) A002110(T(n,k)) A002182(n)
-----------------------------------------------
1: 0; 1 = 1
2: 1; 2 = 2
3: 1, 1; 2 * 2 = 4
4: 2; 6 = 6
5: 1, 2; 2 * 6 = 12
6: 1, 1, 2; 2 * 2 * 6 = 24
7: 2, 2; 6 * 6 = 36
8: 1, 1, 1, 2; 2 * 2 * 2 * 6 = 48
9: 1, 3; 2 * 30 = 60
10: 1, 1, 3; 2 * 2 * 30 = 120
11: 2, 3; 6 * 30 = 180
12: 1, 1, 1, 3; 2 * 2 * 2 * 30 = 240
13: 1, 2, 3; 2 * 6 * 30 = 360
14: 1, 1, 2, 3; 2 * 2 * 6 * 30 = 720
15: 1, 1, 4; 2 * 2 * 210 = 840
...
Row 6 = {1,1,2} since A002110(1)*A002110(1)*A002110(2) = 2*2*6 = 24 and A002182(6) = 24. The conjugate of {2,1,1} = {3,1} and 24 = 2^3 * 3^1.
Row 10 = {1,1,3} since A002110(1)*A002110(1)*A002110(3) = 2*2*30 = 120 and A002182(10) = 120. The conjugate of {3,1,1} = {3,1,1} and 120 = 2^3 * 3^1 * 5^1.
MATHEMATICA
With[{s = DivisorSigma[0, Range[250000]]}, Map[Reverse@ Table[LengthWhile[#, # >= i &], {i, Max@ #}] &@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] /. {} -> {0}] // Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michael De Vlieger, Mar 06 2019
STATUS
approved