OFFSET
1,3
COMMENTS
An asymmetric Dyck path is a path that generates a distinct Dyck path when traversed in opposite order.
LINKS
J. Bonin, A. de Mier, and M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials, J Comb Theory Ser A 104 (2003), 63-94.
L.-H. Deng, E. Y. P. Deng, and L. W. Shapiro, The Riordan group and symmetric lattice paths, arXiv:0906.1844 [math.CO] (2009).
Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [qbio.PE], 2019; Adv. Appl. Math. 113 (2020), 101939.
FORMULA
a(n) = (2n)! / (n! (n+1))! - n! / ( (floor(n/2))! (ceiling(n/2))! ).
EXAMPLE
For n=3, the a(2)=2 asymmetric Dyck paths are UUDDUD and UDUUDD.
MATHEMATICA
Table[Binomial[2 n, n]/(n + 1) - Binomial[n, Floor[n/2]], {n, 0, 30}]
PROG
(PARI) a(n) = binomial(2*n, n)/(n+1) - binomial(n, n\2); \\ Michel Marcus, Jan 22 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Noah A Rosenberg, Feb 04 2019
STATUS
approved