login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306292
Number of asymmetric Dyck paths of semilength n.
0
0, 0, 2, 8, 32, 112, 394, 1360, 4736, 16544, 58324, 207088, 741184, 2671008, 9688410, 35344800, 129620480, 477590080, 1767170812, 6563935664, 24465914304, 91481858208, 343058261572, 1289901443168
OFFSET
1,3
COMMENTS
An asymmetric Dyck path is a path that generates a distinct Dyck path when traversed in opposite order.
LINKS
J. Bonin, A. de Mier, and M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials, J Comb Theory Ser A 104 (2003), 63-94.
L.-H. Deng, E. Y. P. Deng, and L. W. Shapiro, The Riordan group and symmetric lattice paths, arXiv:0906.1844 [math.CO] (2009).
Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [qbio.PE], 2019; Adv. Appl. Math. 113 (2020), 101939.
FORMULA
a(n) = (2n)! / (n! (n+1))! - n! / ( (floor(n/2))! (ceiling(n/2))! ).
EXAMPLE
For n=3, the a(2)=2 asymmetric Dyck paths are UUDDUD and UDUUDD.
MATHEMATICA
Table[Binomial[2 n, n]/(n + 1) - Binomial[n, Floor[n/2]], {n, 0, 30}]
PROG
(PARI) a(n) = binomial(2*n, n)/(n+1) - binomial(n, n\2); \\ Michel Marcus, Jan 22 2020
CROSSREFS
Equals twice A006079. Also A000108 minus A001405.
Sequence in context: A227971 A267661 A052481 * A067897 A145682 A363109
KEYWORD
nonn
AUTHOR
Noah A Rosenberg, Feb 04 2019
STATUS
approved