OFFSET
0,5
COMMENTS
There are at most T(n,k) possible values for the number of knots in an interpolatory cubature formula of degree k for an integral over an n-dimensional region.
LINKS
Ronald Cools, Encyclopaedia of Cubature Formulas
Ronald Cools, A Survey of Methods for Constructing Cubature Formulae, In: Espelid T.O., Genz A. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 357, 1991, Springer, Dordrecht, pp. 1-24.
T. N. L. Patterson, On the Construction of a Practical Ermakov-Zolotukhin Multiple Integrator, In: Keast P., Fairweather G. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 203, 1987, Springer, Dordrecht, pp. 269-290.
FORMULA
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 3, 3, 4, 4, 5, 5, ...
1, 3, 4, 8, 10, 16, 19, 27, 31, ...
1, 4, 7, 17, 26, 47, 65, 101, 131, ...
1, 5, 11, 31, 56, 112, 176, 296, 426, ...
1, 6, 16, 51, 106, 232, 407, 737, 1162, ...
1, 7, 22, 78, 183, 435, 841, 1633, 2794, ...
1, 8, 29, 113, 295, 757, 1597, 3313, 6106, ...
1, 9, 37, 157, 451, 1243, 2839, 6271, 12376, ...
...
As triangular array, this begins:
1;
1, 1;
1, 2, 1;
1, 2, 3, 1;
1, 3, 4, 4, 1;
1, 3, 8, 7, 5, 1;
1, 4, 10, 17, 11, 6, 1;
1, 4, 16, 26, 31, 16, 7, 1;
1, 5, 19, 47, 56, 51, 22, 8, 1;
...
MATHEMATICA
T[n_, k_] = Binomial[n + k, n] - Binomial[n + Floor[k/2], n] + 1;
Table[T[k, n - k], {k, 0, n}, {n, 0, 20}] // Flatten
PROG
(Maxima)
T(n, k) := binomial(n + k, n) - binomial(n + floor(k/2), n) + 1$
create_list(T(k, n - k), n, 0, 20, k, 0, n);
CROSSREFS
KEYWORD
AUTHOR
Franck Maminirina Ramaharo, Jan 29 2019
STATUS
approved