login
A306202
Matula-Goebel numbers of rooted semi-identity trees.
17
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 84, 85
OFFSET
1,2
COMMENTS
Definition: A positive integer belongs to the sequence iff its prime indices greater than 1 are distinct and already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
6: (o(o))
7: ((oo))
8: (ooo)
10: (o((o)))
11: ((((o))))
12: (oo(o))
13: ((o(o)))
14: (o(oo))
15: ((o)((o)))
16: (oooo)
17: (((oo)))
19: ((ooo))
20: (oo((o)))
21: ((o)(oo))
22: (o(((o))))
24: (ooo(o))
26: (o(o(o)))
28: (oo(oo))
29: ((o((o))))
30: (o(o)((o)))
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n], 1], And@@psidQ/@primeMS[n]];
Select[Range[100], psidQ]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 29 2019
STATUS
approved