OFFSET
1,2
COMMENTS
Definition: A positive integer belongs to the sequence iff its prime indices greater than 1 are distinct and already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
6: (o(o))
7: ((oo))
8: (ooo)
10: (o((o)))
11: ((((o))))
12: (oo(o))
13: ((o(o)))
14: (o(oo))
15: ((o)((o)))
16: (oooo)
17: (((oo)))
19: ((ooo))
20: (oo((o)))
21: ((o)(oo))
22: (o(((o))))
24: (ooo(o))
26: (o(o(o)))
28: (oo(oo))
29: ((o((o))))
30: (o(o)((o)))
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n], 1], And@@psidQ/@primeMS[n]];
Select[Range[100], psidQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 29 2019
STATUS
approved