login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1 + prime(k)*x^k).
2

%I #9 Jun 15 2018 10:28:07

%S 1,-2,1,-7,16,-28,62,-118,303,-630,1152,-2426,5315,-10718,20482,

%T -43449,91111,-179254,358910,-727829,1484601,-2995681,5924606,

%U -11935441,24382120,-48702245,96682698,-195063604,392983826,-784903199,1569490057,-3146479152,6317124649,-12652202092

%N Expansion of Product_{k>=1} 1/(1 + prime(k)*x^k).

%C Convolution inverse of A147655.

%H Alois P. Heinz, <a href="/A305881/b305881.txt">Table of n, a(n) for n = 0..3321</a>

%F G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*prime(j)^k*x^(j*k)/k).

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*ithprime(i))))

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1,

%p -add(b(n-i$2)*a(i$2), i=0..n-1))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jun 13 2018

%t nmax = 33; CoefficientList[Series[Product[1/(1 + Prime[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 33; CoefficientList[Series[Exp[Sum[Sum[(-1)^k Prime[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (-Prime[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

%Y Cf. A000040, A002099, A061151, A145519, A147655, A298160, A304791, A305882.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, Jun 13 2018