login
A305161
Number A(n,k) of compositions of n into exactly n nonnegative parts <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
15
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 3, 10, 19, 1, 0, 1, 1, 3, 10, 31, 51, 1, 0, 1, 1, 3, 10, 35, 101, 141, 1, 0, 1, 1, 3, 10, 35, 121, 336, 393, 1, 0, 1, 1, 3, 10, 35, 126, 426, 1128, 1107, 1, 0, 1, 1, 3, 10, 35, 126, 456, 1520, 3823, 3139, 1, 0
OFFSET
0,13
LINKS
Alois P. Heinz, Antidiagonals n = 0..200
FORMULA
A(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n.
A(n,k) - A(n,k-1) = A180281(n,k) for n,k > 0.
A(n,k) = A(n,n) for all k >= n.
EXAMPLE
A(3,1) = 1: 111.
A(3,2) = 7: 012, 021, 102, 111, 120, 201, 210.
A(3,3) = 10: 003, 012, 021, 030, 102, 111, 120, 201, 210, 300.
A(4,2) = 19: 0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1111, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200.
A(4,3) = 31: 0013, 0022, 0031, 0103, 0112, 0121, 0130, 0202, 0211, 0220, 0301, 0310, 1003, 1012, 1021, 1030, 1102, 1111, 1120, 1201, 1210, 1300, 2002, 2011, 2020, 2101, 2110, 2200, 3001, 3010, 3100.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, 3, ...
0, 1, 7, 10, 10, 10, 10, 10, 10, ...
0, 1, 19, 31, 35, 35, 35, 35, 35, ...
0, 1, 51, 101, 121, 126, 126, 126, 126, ...
0, 1, 141, 336, 426, 456, 462, 462, 462, ...
0, 1, 393, 1128, 1520, 1667, 1709, 1716, 1716, ...
0, 1, 1107, 3823, 5475, 6147, 6371, 6427, 6435, ...
MAPLE
A:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n, x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n - j, i - 1, k], {j, 0, Min[n, k]}]]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)
CROSSREFS
Rows n=0-1 give: A000012, A057427.
Main diagonal gives A088218 or A001700(n-1) for n>0.
A(n+1,n) gives A048775.
Cf. A180281.
Sequence in context: A226873 A293960 A062719 * A250484 A294250 A117417
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 17 2018
STATUS
approved