login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305157
a(n) = 164*2^n - 99.
3
65, 229, 557, 1213, 2525, 5149, 10397, 20893, 41885, 83869, 167837, 335773, 671645, 1343389, 2686877, 5373853, 10747805, 21495709, 42991517, 85983133, 171966365, 343932829, 687865757, 1375731613, 2751463325, 5502926749, 11005853597, 22011707293, 44023414685, 88046829469, 176093659037
OFFSET
0,1
COMMENTS
a(n) (n>=0) is the second Zagreb index of the nanostar dendrimer G(n), defined pictorially in the Darafsheh et al. reference (see Fig. 1, where G(2) is shown).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of G(n) is M(G(n);x,y) = 8*2^n*x^2*y^2 + (16*2^n - 12)*x^2*y^3 + (4*2^n - 3)*x^3*y^3.
REFERENCES
M. R. Darafsheh, M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Comb., 100, 2011, 289-298.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 30 2018: (Start)
G.f.: (65 + 34*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
MAPLE
seq(164*2^n-99, n = 0 .. 40);
PROG
(GAP) List([0..40], n->164*2^n-99); # Muniru A Asiru, May 30 2018
(PARI) Vec((65 + 34*x) / ((1 - x)*(1 - 2*x)) + O(x^30)) \\ Colin Barker, May 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 28 2018
STATUS
approved