login
A305078
Heinz numbers of connected integer partitions.
85
2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.
LINKS
Madeline Locus Dawsey, Tyler Russell and Dannie Urban, Polynomials Associated to Integer Partitions, arXiv:2108.00943 [math.NT], 2021.
EXAMPLE
The sequence of all connected multiset multisystems (see A302242, A112798) begins:
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
37: {{1,1,2}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
59: {{7}}
61: {{1,2,2}}
63: {{1},{1},{1,1}}
65: {{2},{1,2}}
67: {{8}}
71: {{1,1,3}}
73: {{2,4}}
79: {{1,5}}
81: {{1},{1},{1},{1}}
83: {{9}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
97: {{3,3}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Select[Range[300], Length[zsm[primeMS[#]]]==1&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 24 2018
STATUS
approved