OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.
LINKS
Madeline Locus Dawsey, Tyler Russell and Dannie Urban, Polynomials Associated to Integer Partitions, arXiv:2108.00943 [math.NT], 2021.
EXAMPLE
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
37: {{1,1,2}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
59: {{7}}
61: {{1,2,2}}
63: {{1},{1},{1,1}}
65: {{2},{1,2}}
67: {{8}}
71: {{1,1,3}}
73: {{2,4}}
79: {{1,5}}
81: {{1},{1},{1},{1}}
83: {{9}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
97: {{3,3}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Select[Range[300], Length[zsm[primeMS[#]]]==1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 24 2018
STATUS
approved