login
A304874
Greatest prime p1 < p2 such that n^2 = (p1 + p2)/2 and p2 is prime.
5
3, 7, 13, 19, 31, 37, 61, 79, 97, 103, 139, 157, 193, 223, 241, 271, 317, 349, 379, 439, 421, 487, 521, 619, 661, 719, 757, 829, 881, 883, 1009, 1087, 1063, 1213, 1291, 1291, 1429, 1511, 1579, 1669, 1741, 1831, 1879
OFFSET
2,1
COMMENTS
Each square > 1 can be written as the average of 2 primes p1 < p2. a(n) gives the greatest prime p1 such that n^2 = (p1 + p2) / 2. The corresponding p2 is provided in A304875.
LINKS
FORMULA
a(n) = n^2 - A172989(n) = A304875(n) - 2*A172989(n).
EXAMPLE
a(2) = 3 because 2^2 = 4 = (3 + 5)/2,
a(7) = 37 because 7^2 = 49 = (37 + 61)/2 and none of the primes p1 = 41, 43 or 47 leads to a prime p2.
CROSSREFS
Sequence in context: A023220 A207990 A023205 * A167473 A256864 A231432
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, May 20 2018
STATUS
approved