login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304787
Expansion of Product_{k>=1} (1 + x^k)^(binomial(2*k,k)/(k+1)).
3
1, 1, 2, 7, 20, 67, 222, 758, 2617, 9189, 32554, 116494, 420046, 1525221, 5571065, 20457808, 75476447, 279636977, 1039965746, 3880891892, 14527657602, 54537434161, 205270200229, 774460385687, 2928429307876, 11095878177649, 42122749335654, 160192845018335, 610224764470011
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Catalan Number
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^A000108(k).
a(n) ~ c * 4^n / n^(3/2), where c = exp[Sum_{k>=1} (-1)^k * (2 - 4^k + 4^k*sqrt(1 - 4^(1-k)))/(2*k) ) / sqrt(Pi) = 1.4863036894111457491052224706533674748514957... - Vaclav Kotesovec, Mar 21 2021
MATHEMATICA
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^CatalanNumber[k], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d CatalanNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 18 2018
STATUS
approved