login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304680
Total number of tilings of Ferrers-Young diagrams using dominoes and at most one monomino summed over all partitions of n.
2
1, 1, 2, 6, 6, 23, 16, 76, 42, 239, 106, 688, 268, 1931, 650, 5266, 1580, 13861, 3750, 35810, 8862, 91065, 20598, 226914, 47776, 559271, 109248, 1360152, 248966, 3270429, 562630, 7785974, 1264780, 18378067, 2823958, 43007532, 6282198, 99892837, 13884820
OFFSET
0,3
MAPLE
h:= proc(l, f, t) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f), t))
else for k from nops(l) while l[k]>0 by -1 do od;
`if`(t, h(subsop(k=1, l), f, false), 0)+
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f, t), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f, t), 0)
fi
end:
g:= l-> (t-> `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l),
is(t, odd))))(add(i, i=l)):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
a:= n-> b(n$2, []):
seq(a(n), n=0..23);
CROSSREFS
Bisection (even part) gives A304662.
Cf. A304677.
Sequence in context: A119551 A100634 A242527 * A367765 A325803 A130865
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2018
STATUS
approved