login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304513
a(n) = 57*2^(n-1) - 38 (n >= 1).
4
19, 76, 190, 418, 874, 1786, 3610, 7258, 14554, 29146, 58330, 116698, 233434, 466906, 933850, 1867738, 3735514, 7471066, 14942170, 29884378, 59768794, 119537626, 239075290, 478150618, 956301274, 1912602586, 3825205210, 7650410458, 15300820954, 30601641946, 61203283930, 122406567898, 244813135834, 489626271706
OFFSET
1,1
COMMENTS
a(n) is the number of vertices of the nanostar dendrimer D[n] from the Ghorbani et al. reference.
LINKS
M. Ghorbani and M. Songhori, Some topological indices of nanostar dendrimers, Iranian J. Math. Chemistry, 1, No. 2, 2010, 57-65.
FORMULA
From Colin Barker, May 15 2018: (Start)
G.f.: 19*x*(1 + x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
MAPLE
seq(57*2^(n-1)-38, n = 1 .. 40);
MATHEMATICA
Rest@ CoefficientList[Series[19 x (1 + x)/((1 - x) (1 - 2 x)), {x, 0, 31}], x] (* or *)
LinearRecurrence[{3, -2}, {19, 76}, 31] (* or *)
Array[57*2^(# - 1) - 38 &, 31] (* Michael De Vlieger, May 15 2018 *)
PROG
(GAP) List([1..40], n->57*2^(n-1)-38); # Muniru A Asiru, May 15 2018
(PARI) Vec(19*x*(1 + x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 15 2018
STATUS
approved